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Abstract: Traditional community detection algorithms are easily interfered by 
noises and outliers. Therefore, we propose to leverage a clustering fusion method to 
improve the results of community detection. Usually, there are two issues in 
clustering ensembles: how to generate efficient diversified cluster members, and 
how to ensembles the results of all members. Specifically: (1) considering the time 
evolving characteristic of real world networks, we propose to generate clustering 
members based on the snapshot of networks, where the split based clustering 
algorithms are performed; (2) considering the difference in the distribution of the 
cluster centers in each clustering member and the actual distribution, we ensemble 
the results based on a maximum likelihood method. Moreover, we conduct 
experiments to show that our method can discover high quality communities.  

Keywords: Time-evolving network, community detection, clustering fusion, network 
snapshot, maximum likelihood method, Expectation Maximization algorithm. 

1. Introduction 

Networks have been one of the most popular forms of many real world systems, 
such as personal networks in social relationships, collaboration networks between 
scientists, epidemic networks and Internet networks [1]. Generally speaking, the 
networks are composed of a set of nodes which are connected in some way to form 
systems, where the nodes represent physical entities, and the connections are the 
relationships between the physical entities [2]. For example, in a collaboration 
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network between scientists, the nodes are scientists and the connections between the 
nodes are the collaboration relationships between them. In graph theory, a network 
can be abstracted as a graph with a set of vertices and edges. Usually, the above 
networks contain a large amount of entities and relationships in the system, so they 
are used to describe the system phenomena and the internal relations. Due to the 
complexity of networks, they are also called complex networks [3, 4]. 

As one of the most significant focuses in complex networks research, 
community detection has attracted large attention. However, in real world scenarios, 
the networks are typically time evolving. Therefore, community detection methods 
must take into consideration the time-evolving feature of the networks. Besides, 
traditional clustering methods are easily disturbed by outliers and noises, and thus 
the quality of the detected communities is affected. 

Therefore, in this paper, considering the dynamic characteristics of time 
evolving networks, we propose to employ a clustering fusion algorithm for 
community detection. Clustering fusion is the method which integrates the results 
of multiple clusters to induce the final results [5]. Basically, clustering fusion has 
two major steps: first it generates a set of clustering members and then combines 
the results of the above clustering members. Accordingly, there are two challenges 
in this work: (1) how to efficiently generate clustering members of time evolving 
networks; and (2) how to combine the clustering results together, considering the 
issues, such as mapping between different types of labels.  

In summary, the contributions of this paper are as follows: 
1) we provide a model of time evolving networks and a unified description of 

each clustering; 
2) we design a clustering fusion algorithm based on the idea of the maximum 

likelihood method; 
3) we perform extensive experiments to evaluate the proposed algorithm, 

which is proved to be efficient for community detection in evolving networks. 

2. Related work 

Many efforts have been made in community detection. Typical methods for 
community detection are based on betweenness [6], modularity [7], random walk 
[8], information theory [9], etc. For example, G i r v a n and N e w m a n [10] 
proposed a divisive clustering method for community detection. C o h n  and  
C h a n g [11] used PHITS (Probabilistical Hyperlink Induced Topic Search) by 
extending HITS (Hyperlink Induced Topic Search) [12] through PLSA 
(Probabilistic Latent Semantic Analysis) [19] for community detection. 
N a l l a p a t i  et al. [13] designed MMSB (Mixed Membership Stochastic Block) to 
analyze the links for community detection. Moreover, T a n g  et al. [14] extend the 
community detection from a single network to multiple networks. Along this line, 
P a p a l e x a k i s, A k o g l u, and I e n c e [15] proposed a multi-graph clustering 
technique based on minimum description length and tensor analysis. D e n g  et al. 
[16] analyzed different relationships in a social network and proposed a linear 
combination method to optimize the member relationships in learning communities. 
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T a n g, W a n g  and  L i u [17] proposed to deal with the noises in multi-media 
networks through combination of multi-source data.  

There are also existing works on evolving networks. For example, B r e i g e r 
[18] analyzed the connections changing over time. L e s k o v e c, K l e i n b e r g  and  
F a l o u t s o s [19] investigated the evolving characteristics of networks. 
T a n t i p a t h a n a n a n d h, B e r g e r-W o l f and K e m p e [20] formulated the 
dynamic community detection as a graph coloring problem, and proposed a 
heuristic method as a solution. F a l k o w s k i, B a r t e l h e i m e r  and  
S p i l i o p o u l o u  [21] analyzed the partitions of different timestamps based on a 
statistical method. Differing from the existing efforts, in this paper we propose a 
clustering fusion method to improve community detection. 

3. Overview of the proposed method 

In this paper we focus on community detection in time evolving networks.  
In order to describe the time evolving characteristic of networks, we use 

snapshots to represent the network at specific time. Therefore, we simply select the 
clustering members from the clustering results of the network snapshots during a 
certain period.  

The proposed method is composed of two stages: first, for each network 
snapshot, perform a base clustering algorithm to get the clustering result at a 
specific timestamp, which will be discussed in Section 4. Second, combine the 
clusterings during a time period together to generate the final clustering, as 
presented in Section 5. In this way we consider the dynamic evolving characteristic 
of the networks by the fusion of clusterings among different timestamps.  

4. Base clustering 

In order to perform clustering on a network dataset into clusters (i.e., communities) 
with varied densities and shapes considering isolated and noise data, we propose a 
divisive hierarchical clustering algorithm.  

Usually the communities in complex networks are connected. Inspired by that, 
we formulate the community detection problem as a clustering task on a connected 
graph. Therefore, the first step of base clustering is to construct a set of connected 
graphs from the network. Then, a divisive hierarchical clustering algorithm is 
performed on each connected graph. 

4.1. Constructing connected graphs 

Let the threshold of nodes being within the same community be l . The selection of 
l  is automatically computed based on the largest connected graph. That is,  

y
x

el
2
1

= , where yx,  are the numbers of edges and nodes in the largest connected 

graph respectively.  
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Only when the strength of connection is not smaller than l , the two nodes are 
in the same community. Indeed, in this way the problem is simplified beforehand by 
eliminating weak or no connections.  

 
Fig. 1. Flow chart of constructing connected graphs 

On the other hand, given the presence of noise data, typically the communities 
discovered are over connected. For example, even if entities ba,  do not belong to 
the same communities in reality, the noise data might connect them together. 
Accordingly, different classes of objects are connected into one community through 
noise. Therefore, not only the connecting threshold, but the disconnecting threshold 
should also be set to ensure the efficiency of the connected graph. Denote the 
disconnecting threshold as h , which means that if the connection strength is larger 
than h , the connection is regarded as noise and must be discarded.  
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In network tsn , the adjacency matrix between the nodes is notated as A , 
where each element ija  is defined as 
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where ijd  is the distance between nodes i and j. 
The procedure of constructing connected graphs is shown in Fig. 1. Basically, 

we employ a DFS (Depth-First-Search) strategy for generating eligible connected 
graphs. First of all, starting from any node 0n  in the network tsn , and then traverse 
other nodes using DFS strategy. For each node C  found, calculate the distance 
between 0n  and C  as follows: 
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where j  is the intermediate node on the path ),( 0 Cn . 
Then compute ),( 0 Cna  based on (1). If 1),( 0 =Cna , add the node to the 

connected graph; otherwise, delete node C and continue. The procedure finishes 
until all nodes in tsn  are visited. 

4.2. Divisive hierarchical clustering 

Now we have a set of connected graphs for each snapshot tsn , so we need to 
further divide them into multiple partitions (i.e., communities).  

The basic idea of divisive hierarchical clustering is to divide the network into 
two partitions based on a threshold and then update the threshold and perform the 
division recursively. First, we build a tree structured partition by divisive clustering. 
The steps of the algorithm are four and are described bellow. 

Step 1. Initialize threshold T for division. The process is: randomly select N  
pairs of data points and calculate the distance ijd  between them; set T as 

)Dd25.0Ed( ijijp ×+× , where ijij Dd,Ed  are the expectation and deviation of 
distances, and p  is a predefined percent. In this paper we set  %20=p . 

Step 2. For each connected graph in tsn , find the initial clusters.  
In this step we leverage the Grey Relational Analysis (GRA) [22] to measure 

the connections between nodes. Considering that the connections in real world 
situations are typically gray or fuzzy, GRA uses a gray correlation coefficient to 
measure the strength of connections. In our case, at time t, the gray correlation 
coefficient between nodes ji,  is calculated as 
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where ]1,0(∈α  is the resolution factor. The smaller α  is, the better the resolution 
is. Typically, we set 5.0=α  in this study. )(tijΔ  is the difference between ji,  at 
time t , which is computed as 
(4) |,)()(|)( twtwt jiij −=Δ  
where )(twi  is the importance of node i  at time t : 

(5) ,)()(
)(neighbor

∑
∈

=
ij
iji twtw  

where )(twij  is the value between node i  and its neighbour.  
Therefore, for any entity X we set its initial cluster as set 0C , where each 

element 0CY ∈  satisfies .1)( Ttg XY −≥  That is: 
(6) }.1)(|{)(0 TtgYXC XY −≥=  

If )(0 XC  is not null, start from X  and get the initial cluster .0C  Now we 
divide the connected graph into two partitions, i.e., the initial cluster 0C  and the 
remaining nodes RC . 

Step 3. Update T  as Δ−= TT . 
Step 4. If RC  is not null, divide RC  into two clusters RL CC ,  as in Step 2. 

Otherwise, the algorithm ends. 
Now we have a list of tree structured partitions },...,,{ 21 kCCCC =  and the 

next step is to determine the best partition results.  
We measure the quality of the clusters by intra-cluster quality and inter-cluster 

separation, and the objective is to maximize the intra-cluster connection and 
minimize the inter-cluster connection, as illustrated in Fig. 2.  

 
Fig. 2. Illustration of evaluating clusters 

Let )(CQt  and )(CSt  denote the intra-cluster distance and inter-cluster 
distance respectively, and:  
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Therefore, in order to find the best partitions of the network snapshot, given a 
set of hierarchical clusters, for each layer of clusters, calculate: 
(9) ),()( CSCQ tt −  
and get the maximum value as clusters of tsn . 

 
Fig. 3. The whole process of base clustering 

The whole process of base clustering can be summarized in Fig. 3. 

5. Clustering fusion 

Now we have the base clustering results for each snapshot network. In this paper we 
propose to maximize the likelihood function of cluster labels for all snapshot 
networks to assign the final labels. 

Denote the base clustering result for tsn  as t

t

tt
kCCC snsn

2
sn
1 ,...,, , where tk  is 

the number of clusters for network tsn . Therefore, for each entity ,,...,2,1, Nixi =  
in Mtt ,...,2,1,sn =  we have a set of labels for different timestamps: 

(10) },...,,{ snsnsn 21 M

iii xxxi cccx →  

where t

ixcsn  denotes the cluster label of ix  in the network tsn .  
Hence, the entities in the original dataset can be represented as 
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Consider the final cluster label of each entity iy  as a mixture model for the 

probability of t

ixcsn . That is, iy  is modeled upon the mixture of multi-variant 
components 

(12)  ),|()|(
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t
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where },...,,{ 21 Mθθθ=Θ , each component )|( tit yp θ  is the distribution of each 
base clustering results for network snapshots, tω  denoting the importance of t-th 
component. We assume that the more recent the snapshot is, the more significant 
the clustering is. Thus,  

(13)  ,
||

1

0ttt −
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where 0t  is the initial time. 
Assume that the distribution of },...,,{ 21 NyyyY =  is independent and 

identical. In order to infer the value of iy , we need to resolve the parameters Θ . 
Represent the log-likelihood function for Θ  as follows [23]: 
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The objective is to find the estimation of Θ  to maximize )|(log YL Θ : 
(15)  ).|(logmaxargˆ YL Θ=Θ  

We employ the Expectation Maximization (EM) algorithm [24] to solve the 
estimate Θ . Let )|( yf θ  be the posterior distribution density function, ),|( cyf θ  
be the posterior distribution added by the cluster labels of each individual base 
clustering. The procedure is described as follows. 

E-step. Calculate the expectation of ),|(log cyf θ : 

(16)  ),,|(),|(log1),|),|((log),(
1

t

M

t
tt ycfcyf

M
ycyfEQ θθθ ∑

=

Θ=Θ=Θ  

where ),|( tycf θ  is the conditional distribution density function of c, given 
observation y. 

M-step. Maximize ),( tQ θΘ  so that 1+tθ  satisfies 
(17)  ).,(maxarg1 tt Q θθ Θ=+  
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Recursively perform EM steps until εθθ <−+ || 1 tt  or 
εθθ <Θ−Θ + |),(),(| 1 tt QQ , where ε  is a sufficiently small number. 

6. Experiment 

In this section we conduct experiments to evaluate the performance of the proposed 
clustering based community detection method. The dataset used in this experiment 
are achieved from [25], whose statistics are shown in Table 1. 

We compare our proposed clustering fusion method with three baselines: (1) 
single k-means clustering, notated as KMC; (2) clustering fusion with k-means 
clustering on multiple snapshot networks, notated as F-KMC; (3) single divisive 
clustering as described in Section 4, notated as DC. Our proposed clustering fusion 
with divisive clustering is denoted as F-DC. 

Tables 2 and 3 list the results of clustering for the four methods, including the 
convergence time, as well as the minimum, maximum, average and standard 
deviation values of log likelihood function. We can observe that though our 
proposed method F-DC is relatively time consuming in convergence, the 
performance of log likelihood function is better than the other three baselines. 
Besides, we can also see that the clustering fusion methods are better than single 
clustering on a specific snapshot network. Moreover, as shown in Fig. 4, the log 
likelihood function of F-DC convergence is approximately at iteration 15, which is 
satisfactory though. 

Table 1. Statistics of the dataset in our experiment 

Snapshot 
No 

No of social 
nodes 

No of social 
links 

No of attri 
nodes 

No of attri 
links 

Crawled  
time 

Snapshot 1 4,693,129 47,130,325 991,545 3,644,103 July 2011 
Snapshot 2 17,091,929 271,915,755 3,108,141 14,693,125 August 2011 

Snapshot 3 26,244,659 410,445,770 4,147,389 19,344,382 September 
2011 

Snapshot 4 28,942,911 462,994,069 4,443,631 20,592,962 October 2011 

Table 2. Clustering results comparison of each snapshot without fusion 

Snapshot No Algorithm Convergence 
time Min Max Average Standard 

deviation 

Snapshot 1 
KMC 6.1527 3.6694 5.8812 4.7753 11.5207 
DC 9.2464 3.7913 4.0789 3.9351 3.6813 

Snapshot 2 
KMC 7.2134 3.6321 5.9810 4.8066 12.9898 
DC 10.0021 3.7755 4.6824 4.2290 4.0215 

Snapshot 3 
KMC 11.1683 3.6706 6.0943 4.8825 13.0357 
DC 13.2464 3.7767 5.9633 4.8700 3.8848 

Snapshot 4 
KMC 12.2012 3.6543 5.7822 4.7183 13.1211 
DC 13.8994 3.7664 4.9925 4.3795 3.9697 
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Table 3. Clustering results in comparison with clustering fusion 

Algorithm Convergence 
time Min Max Average Standard 

deviation 

F-KMC 4.2733 0.9102 0.9227 0.9165 1.9826 

F-DC 15.2520 0.9025 0.9027 0.9026 0.0002 

Moreover, we measure the performance of clustering using Dunn Index (DI) 
[26]: 
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where ),(dist ji  denotes the inter-cluster distance between clusters i  and j, 
)(dist k  is the intra-cluster distance within cluster k. The higher DI is, the better the 

clustering is. 

 
Fig. 4. Convergence curve of a log likelihood function of F-DC 

We compare the DI values for the four methods in Fig. 5, where the instances 
are derived from the above four snapshots. We can observe that DI measure of the 
method herein proposed is the highest and it remains stable for different numbers of 
clusters. Therefore, we can conclude that our proposed clustering fusion method can 
detect high quality and accurate communities. 

 
Fig. 5. Comparison of DI for different methods 
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7. Conclusion 

In this paper we propose a clustering fusion method for detecting high quality 
communities. Specifically, first we generate the clustering members from different 
snapshots of a network and then employ a fusion method based on EM algorithm to 
maximize the likelihood of assigning a specific entity into some clusters. Though 
we consider different snapshots of evolving networks, we only use link based data 
for detecting communities. In future works we would like to explore the influence 
of emerging events on community detection. 
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